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Abstract—Owing to the great advent of sensor technology, the 
usage data of appliances in a house can be logged and collected 
easily today. However, it is a challenge for the residents to 
visualize how these appliances are used. Thus, mining 
algorithms are much needed to discover appliance usage 
patterns. Most previous studies on usage pattern discovery are 
mainly focused on analyzing the patterns of single appliance 
rather than mining the usage correlation among appliances. In 
this paper, a novel system, namely, Correlation Pattern Mining 
System (CPMS), is developed to capture the usage patterns and 
correlations among appliances. With several new optimization 
techniques, CPMS can reduce the search space effectively and 
efficiently. Furthermore, the proposed algorithm is applied on 
a real-world dataset to show the practicability of correlation 
pattern mining.  

Keywords- correlation pattern; smart home; sequential 
pattern;  time interval-based data; usage representation 

I.  INTRODUCTION  
Recently, many researchers focus on the reduction of 

electricity usage in residence because it is a significant 
contributor of greenhouse gas (GHG) emissions. However, 
electricity conservation is an arduous task for the residential 
users due to the lack of detailed electricity usage. Due to the 
advance of sensor technology, the electricity usage data of 
in-house appliances can be collected easily. In particular, an 
increasing number of smart power meters, which facilitates 
data collection of appliance usage, have been deployed. With 
the usage data, one could supposedly visualize how the 
appliances are used. 

With an anticipated huge amount of appliance usage data, 
subtle information may exist but hidden. Therefore it is 
necessary to devise data mining algorithms to discover 
appliance usage patterns in order to make representative 
usage behavior of appliances explicit. Appliance usage 
patterns can not only help users to better understand how 
they use the appliances at home but also detect abnormal 
usages of appliances. Moreover, it facilitates appliance 
manufacturers to design intelligent control of smart 
appliances. 

Many prior studies discuss how to extract useful 
knowledge regarding usage patents of a single appliance via 
energy disaggregation [3, 6, 7, 13, 16, 24] or appliance 
recognition [2, 5, 8, 12, 18, 22, 24]. Farinaccio et al. [6] use 
some patterns, such as number of ON-OFF switches, to 
disaggregate the whole-house electricity consumption into a 
number of major end-uses. Suzuki et al. [24] use a new 

NIALM technique based on integer programming to 
disaggregate residential power use. Lin et al. [16] use a 
dynamic Bayesian network and filter to disaggregate the data 
online. Kim et al. [13] investigate the effectiveness of several 
unsupervised disaggregation methods on low frequency 
power measurements collected in real homes. They also 
propose a usage pattern which consists of on-duration 
distribution of all appliances. Goncalves et al. [7] explore an 
unsupervised approach to determine the number of 
appliances in the household, including their power 
consumption and state, at any given moment. Chen et al. [3] 
disaggregate utility consumption from smart meters into 
specific usage associated with certain human activities. They 
propose a novel statistical framework for disaggregation on 
coarse granular smart meter readings by modeling fixture 
characteristic, household behavior, and activity correlations. 

Prudenzi [22] utilize an artificial neural network based 
procedure for identifying the electrical signatures of 
residential appliances. Ito et al. [8] extract features from the 
current (e.g., amplitude, form, timing) to develop appliance 
signatures. For appliance recognition, Kato et al. [12] use 
Principal Component Analysis to extract features from 
electric signals and classify them using Support Vector 
Machine. Aritoni et al. [2] develop a software prototype to 
understand the behaviors of household appliances. 
Matthews et al discuss some of these works and  
characterize workable solutions [18]. Chen et al. [5] 
introduce two types of usage patterns to describe users’ 
representative behaviors. Based on these two types of 
patterns, an intelligent system, Jakkula et al. [9, 10, 11] 
propose an Apriori-based algorithm for activity prediction 
and anomaly detection from sensor data in a smart home. 
HAUBA [5], is developed to analyze the usage status of all 
appliances in a smart home environment. 

All aforementioned studies focus on knowledge 
extraction for a single appliance instead of the correlation 
among appliances in a house. In our daily life, we usually 
use different appliances simultaneously. For example, while 
the night, air conditioner and television in the living room 
may be turned on in the evening (as shown in Fig. 1). The 
correlation among the usage of some appliances can provide 
valuable information to assist residents better understand 
how they use appliances. 

Moreover, it is difficult to discover useful knowledge 
from a huge set of generated patterns. Too many patterns 
sometimes hinder users from understanding their actual 
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behaviors. Hence, we aim to derive compact and meaningful 
patterns in this study. 
 

 
Fig. 1: An example of daily usage sequence. 

So far, little attention has been paid to the issue of mining 
correlation among appliances, which undoubtedly is more 
complex and arduous than mining the usage patterns of an 
appliance alone, and thus requires new mining techniques. In 
this paper, a new framework fundamentally different from 
previous work is proposed to discover the usage correlation 
patterns. The contributions of our work are as follows: 

� We define the notion of correlation pattern based on 
time interval-based sequence. Since the usage of a 
device can be regarded as a usage interval (time 
duration between turn-on and turn-off), interval-
based sequence can depict users’ daily behaviors 
unambiguously. 

� The relation between any two usage intervals is 
intrinsically complex. This complex relation is really 
crucial for designing a correlation pattern mining 
algorithm with high efficiency and effectiveness, 
since it may lead to more candidate sequences and 
heavier workload for computing the support. We 
propose a method, called usage representation, to 
simplify the processing of complex relations among 
intervals by considering the global information of 
intervals in the sequence.  

� We develop an intelligent system, called Correlation 
Pattern Mining System (abbreviated as CPMS), to 
capture the usage patterns implying the correlations 
among appliances with several optimized techniques 
to reduce the search space effectively. 

� To demonstrate the practicability of correlation 
pattern mining, we apply CPMS on a real dataset 
and analyze the results to show the discovered 
patterns are not just an anecdote. 

The rest of the paper is organized as follows. Section 2 
provides the preliminaries. Section 3 introduces the proposed 
CPMS system. Section 4 reports the experimental results in a 
performance study, and finally Section 5 concludes the paper.  

II. PRELIMINARIES 
Definition 1 (Usage-interval and usage-interval sequence) 
Let A = {a1, a2,…, ak} be a set of k appliances. Let the triplet 
(ai, oi, fi) � A � N � N denote a usage-interval of ai, where ai 
� A, oi, fi � N and oi � fi. The two time points oi, fi denote the 
using times, where oi and fi are the turn-on time and the turn-
off time of appliance ai, respectively. The set of all usage-
intervals over A is denoted by I. A usage-interval sequence is 
a series of usage-intervals �(a1, o1, f1), (a2, o2, f2), …, (an, on, 
fn)�, where oi � oi+1, and oi � fi.  

Take Fig. 1 as an example. Suppose there are three 
appliances, light, air conditioner (AC), television (TV). Each 
appliance has its interior location in the house. (light, 18:00, 
24:00) is a usage-interval and �(AC, 00:00, 06:00), (light, 
05:00, 08:00), (light, 18:00, 24:00), (AC, 18:00, 24:00), (TV, 
20:00, 22:00)� is a daily usage-interval sequence on Oct. 27, 
2013. 
 
Definition 2 (Usage-interval database) Considering a 
database DB = {r1, r2, …, rm}, each record ri, where 1 � i � m, 
consists of a date, a usage-interval (i.e. an appliance symbol, 
a turn-on time, and a turn-off time, where turn-on time � 
turn-off time). DB is called a usage-interval database. If all 
records in DB with the same date are grouped together and 
ordered by nondecreasing turn-on time, turn-off time and 
appliance symbol, actually, DB can be transformed into a 
collection of daily usage-interval sequences. Fig. 2 shows a 
usage database which consists of 17 usage intervals and 4 
daily usage-interval sequences. 
 

Processing usage-interval sequence is a difficult task. 
Since the relation among usage intervals is intrinsically 
complex. Allen’s 13 temporal logics [1], in general, can be 
adopted to describe the relations among intervals. However, 
Allen’s logics are binary relation. When describing 
relationships among more than three intervals, it may suffer 
several problems. In this paper, we modify the coincidence 
representation [4] and propose a new expression, called 
usage representation, to address the ambiguous and scalable 
problem of Allen’s temporal logics. 

Given a usage-interval sequence Q = �(a1, o1, f1), (a2, o2, 
f2), …, (an, on, fn)�, The set TSQ ={o1, f1, o2, f2, …, oi, fi,…, on, 
fn} is a time set corresponding to Q, where 1 � i � n. If we 
order all the elements of TSQ in nondecreasing order, we can 
derive a sequence TQ = �t1, t2, …, t2n� where ti � TSQ , ti � ti+1. 
TQ is called a time sequence corresponding to Q. 

Definition 3 (Usage-point and usage sequence) Given a 
usage-interval sequence Q = �(a1, o1, f1), (a2, o2, f2), …, (ai, 
oi, fi), …, (an, on, fn)�, where (ai, oi, fi) � I and corresponding 
TQ = �t1, t2, …, tj, …, t2n�, a function � that maps a usage 
interval (ai, oi, fi) into two usage-points ai  and ai  is 
defined as follows.  
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where ai  and ai  are called on-point and off-point of interval 
(ai, oi, fi), respectively. The usage-points ak

*, …, a�
* (* can be 

 or  ) are collected in brackets as a pointset if they occur at 
the same time in TQ, denoted as (ak

*, …, a�
*). A usage 

sequence SQ of Q is denoted by �s1, …, si,…, s2n� where si is 
a usage-point. 
 

For example, in Fig. 2, the database collects 4 daily 
usage-interval sequences. The usage sequence of date 2 is �B 

B D (E F )(E F )D �, and (E F ) and (E F ) are two 
pointsets because they occur at the same time, respectively. 

10/27, 2013: 00:00 24:0006:00 12:00 18:00

AC

TV

light

10/27, 2013: 00:00 24:0006:00 12:00 18:00

AC

TV

light
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date appliance 
symbol 

turn-on 
time 

turn-off 
time pictorial example usage representation (usage sequence) 

1 A 02:10 07:30 
1 B 05:20 10:00 
1 C 05:20 12:30 
1 D 16:10 22:40 
1 E 18:00 20:00  

� A (B C ) A B C D E E D �

2 B 00:40 05:30 
2 D 08:00 14:00 
2 E 10:20 13:10 
2 F 10:20 13:10  

� B B D (E F ) (E F ) D �

3 A 06:00 12:20 
3 B 07:20 14:00 
3 D 14:00 20:30 
3 E 17:30 19:00  

� A B A (B D ) E E D � 

4 B 08:30 10:00 
4 A 13:20 16:00 
4 D 20:00 23:30 
4 E 21:30 22:40  

� B B A A D E E D �

Fig. 2: An example of usage database. 

Definition 4 (Usage representation) Given a usage-interval 
sequence Q = �(a1, o1, f1), …, (an, on, fn)� and corresponding 
time sequence TQ = �t1, …, ti, …,t2n�, by Definition 3, we can 
derive a usage sequence SQ = �s1, …, si, …, s2n�. SQ is also 
called the usage representation of Q. 
 

By Definition 4, we can transfer a usage-interval 
database into usage representation. Take the database in Fig. 
2 as an example. The usage representation of DB is shown in 
the last column in Fig. 2. For the rest of this paper, we 
assume the usage database has already been transformed into 
usage representation.  

Let S1 = �x1, …, xi, …, xn� and S2 = �x1
’, …, xj

’, …, xm
’ � be 

two usage sequences, where xi, xj
’ are pointsets and n � m. S1 

is called a subsequence of S2, denoted as S1  S2, if there 
exist integers 1 � k1 � k2 � …� kn � m such that x1 � xk1

’, x2 � 
xk2

’, …, xn � xkn
’. Given a usage-interval database DB in 

usage representation, the tuple (date, S )�DB is said to 
contain a usage sequence S’ if S’  S. The support of a usage 
sequence S’ in DB, denoted as support(S’ ), is the number of 
tuples in the database containing S’. More formally, 

support(S’  ) = |{ (date, S ) �DB | S’  S }|.             (2) 
Obviously, the support count decides the significance of a 
usage sequence. We use a support threshold, min_sup, to 
filter out insignificant usage sequences. A usage sequence S 
= �s1, …, sn� in DB is called a frequent sequence, if 
support(S) � min_sup. 

Definition 5 (Correlation pattern) Given a usage-interval 
database DB in usage representation and a threshold, 
min_sup, a usage sequence is called frequent if its support is 
no less than minsup. A frequent usage sequence is called a 
correlation pattern if all usage-points in the sequence appear 
in pairs, i.e., every on(off)-point has a corresponding off(on)-
point. 
 

Again, take the database in Fig. 2 as an example. Given 
min_sup = 2, � A B A B  � is a correlation pattern since its 

support is 3 � 2 and all usage-points in sequence appear in 
pairs. However, although �A B A � is a frequent usage 
sequence, it is not a correlation pattern due to on-point B  
having no corresponding off-point. 

III. CPMS SYSTEM 
We focus our study on correlation pattern mining in 

smart home due to its wide applicability and the lack of 
research on this topic. In this paper, we develop a new 
system, called Correlation Pattern Mining System 
(abbreviated as CPMS), to discover correlation patterns 
effectively and efficiently. CPMS utilizes the arrangement of 
endpoints to accomplish the mining of correlation among 
appliances’ usage. We also propose two pruning strategies to 
effectively reduce the search space and speedup the mining 
process. In Section 3.1, we discuss several advantages of 
usage representation. In Section 3.2, we detail the mining 
system and proposed pruning mechanisms. 

3.1 Advantages of usage representation 
Extracting correlation patterns from data collected in 

smart homes can provide resident useful information to 
better understand the relation among usage of appliances. 
Given a correlation pattern, as defined in Definition 5, a user 
can know the relation between appliances. 

Consider the correlation pattern �A B A B � in 
aforementioned example. Suppose appliances A and B are 
the light and the coffee machine, respectively. Given the 
correlation of light and coffee machine, we can know the 
relation between them. This information is very useful for 
several applications, such as abnormal detection and activity 
prediction. For example, a user forgets to turn off the coffee 
machine when she goes to supermarket. The home 
management system (HMS) detects that the coffee machine 
is still turn-on at a time. Sine the pattern represents the 
representative behavior (i.e., turning off coffee machine after 
turning off light), the probability that coffee machine is still 
on is very low. Thus, the HMS sends a message to the user’s 
smart phone to notify this anomaly. Activity prediction also 
can be realized by discovering correlation patterns. From the 

B A D

E

E

A
B

D

B

E

F

D

A

B

C D

E
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example pattern, we can observe that the coffee machine is 
usually turned on after the light is turned on. If we detect the 
light is turned on at a given time, the HMS may 
automatically turns on the coffee machine if probability of 
the aforementioned correlation pattern is high. 
 

A BA B

A
B

A
B

A
B
A
B

A
B

A
B

A
B

A
B

A BA B

A
B
A
B ( A B ) ( A B )B equal AA equal B

A (A B )BB met-by AA meets B

A B (A B )B finishes AA finished-by B

( A B ) B AB started-by AA starts B

A B B AB during AA contains B

A (A B ) BB overlapped-by AA overlaps B

A A B BB after AA before B

usage
representation

pictorial
example

inversed
relation

temporal
relation

( A B ) ( A B )B equal AA equal B

A (A B )BB met-by AA meets B

A B (A B )B finishes AA finished-by B

( A B ) B AB started-by AA starts B

A B B AB during AA contains B

A (A B ) BB overlapped-by AA overlaps B

A A B BB after AA before B

usage
representation

pictorial
example

inversed
relation

temporal
relation

Fig. 3: The usage representation of Allen’s relations between two intervals. 

Obviously, the correlation pattern mining is an arduous 
task. Since the time period of the two usage-intervals may 
overlap, the relation between them is intrinsically complex. 
Allen’s 13 temporal logics [1], in general, can be adopted to 
describe the relations among intervals, as shown in Fig. 3. 
However, Allen’s logics are binary relations. When 
describing relationships among more than three intervals, 
Allen’s temporal logics may suffer several problems.  

A suitable representation is very important for describing 
a correlation pattern. In this paper, a new expression, called 
usage representation, is proposed to effectively address the 
ambiguous and scalable issue [25] for describing 
relationships among intervals. Given two different usage-
intervals A and B, the usage representation of Allen’s 13 
relations between A and B is categorized as in Fig. 3. Several 
merits of usage representation are discussed as follows, 

� Compactness: Since each usage-interval has two 
usage-points, we only use 2k space for expressing a 
k-interval sequence. The usage representation scales 
well even with plenty of usage-intervals appearing in 
a sequence. 

� Nonambiguity: According to [25], we can find that 
the usage representation has no ambiguous problem. 
First, by Definition 3, we can transform every usage-
interval sequence to a unique usage sequence. In 
other words, the temporal relations among intervals 
can be mapped to a usage sequence. Second, in a 
usage sequence, the order relation of the starting and 
finishing endpoints of A and B can be categorized as 
shown in Fig. 3. Hence, we can infer the original 
temporal relationships between intervals A and B 
nonambiguously. 

� Simplicity: Obviously, the complex relations 
between intervals are the major bottleneck of 
correlation pattern mining. However, the relation 

between two usage points is simple, just “before,” 
“after” and “equal.” The simpler the relations, the 
less number of intermediate candidate sequences are 
generated and processed. 

3.2 CPMS 
Before introducing the proposed system, we modify the 

idea in [21] and define the projected database first. Let � be 
a usage sequence in a database DB with usage representation. 
The � - projected database, denoted as DB|� , is the collection 
of postfixes of sequences (including usage sequences and 
corresponding time sequence) in DB with regards to prefix �. 

Fig. 4 shows the system framework of CPMS. We first 
collect the usage data of all appliances from the attached 
smart meters and store them in cloud server (i.e., usage 
database). Then we extract the usage patterns implying the 
correlations among appliances from usage database. 
Algorithm 1 illustrates the correlation pattern mining 
algorithm, CoPMiner, of CPMS. 
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Fig. 4: The system framework of CPMS. 

We first transform the usage database to usage 
representation and calculates the count of each usage-point 
concurrently (line 2, algorithm 1). CoPMiner removes 
infrequent usage-points under given support threshold, 
min_sup (line 3, algorithm 1). Then, for each frequent usage-
point, CoPMiner constructs the projected database and calls 
UPrefixSpan recursively to obtain all correlation patterns 
(lines 5-7, algorithm 1). Note that we only consider the on-
point here (line 4, algorithm 1). Finally, we output all 
discovered correlation patterns. 
 

Algorithm 1: CoPMiner (DB, min_sup, min_sim)
Input: a usage-interval database DB, the support threshold 

min_sup, the similarity threshold min_sim 
Output: all correlation patterns P 

 
01: P � �; 
02: transform DB into usage presentation by Definition 4; 
03: find all frequent usage-points and remove infrequent 

usage-points in DB; 
04: FS � all frequent “on-points”; 
05: for  each s � FS  do 
06:      construct DB|s; 
07:      UPrefixSpan(DB|s , s, min_sup, P ); 
08: output all correlation patterns P; 
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By borrowing the idea of the PrefixSpan [21], 
UPrefixSpan is developed with two search space pruning 
methods. The pseudo code is shown in Algorithm 2. For a 
prefix �, UPrefixSpan scans its projected database DB|� once 
to discover all local frequent usage-points and remove 
infrequent ones (line 1, algorithm 2). For frequent usage-
point s, we can append it to original prefix to generate a new 
frequent sequence �’ with the length increased by 1. As such, 
the prefixes are extended (lines 3-4, algorithm 2). If all 
usage-points in a frequent sequence appear in pairs, i.e., 
every on(off)-point has corresponding off(on)-point, we can 
output this frequent  sequence as a correlation pattern (lines 
5-6, algorithm 2). Finally, we can discover all correlation 
patterns by constructing the projected database with the 
frequently extended prefixes and recursively running until 
the prefixes cannot be extended (lines 7-8, algorithm 2).  
 

Algorithm 2: UPrefixSpan (DB|�, � , min_sup, P )
Input: a projected database DB|� , an usage sequence � , the support 

threshold min_sup, and a set of correlation patterns P 
Output: a set of correlation patterns P 
 
01: scan DB|� once, remove infrequent usage-points and find every 

frequent usage-point v such that: 
(i) v can be assembled to the last pointset of �  to form a frequent 

sequence; or 
(ii) �v� can be appended to �  to form a frequent sequence; 

01: FS � all frequent usage-points;    
02: FS � point_pruning(FS, �);   // point-pruning strategy 
03: for  each s � FS  do 
04:      append s to �  to form �’; 
05:      if �’ is a correlation pattern  then 
06:           P � P  �’ ;  
07:      DB|�’ � DB_construct(DB|�, �’ );   // prefix-pruning strategy
08:      UPrefixSpan(DB|�’ , �’, min_sup, P); 
 
Procedure point_pruning (FS, �)
09: temp_point � �; 
10: for  each s � FS  do 
11:      if s is a “off-point”  then   // point-pruning strategy 
12:           if  exist corresponding “on-point” in �  then  
13:                temp_point � temp_point  s; 
14:      if s is a “on-point”  then
15:           temp_point � temp_point  s;
16: return temp_point;

Procedure DB_construct (DB|�, �’)
17: temp_seq � �; 
18: find all postfix sequences of �’ in DB|� to form DB|�’ ; 
19: for  each postfix sequence q � DB|�’  do  
20:      eliminate the “off-points” in q which has no corresponding “on-

point” in �’ ;   // prefix-pruning strategy 
21:      temp_seq � temp_seq  q; 
22: return temp_seq;

  
Taking into account the property of usage-point, we propose 

two pruning strategies, point-pruning and postfix-pruning to 
reduce the searching space efficiently and effectively. Firstly, 
the on-points and the off-points definitely occur in pairs in a 
usage sequence. We only require projecting the frequent on-
points or the frequent off-points which have the corresponding 

on-points in their prefixes. For example, if we scan the 
projected database DB|�A � with respective to prefix �A � 
and find three frequent local usage-points, A , B  and B . 
We only require extending prefix �A � with A  and B  
(i.e., �A A � and �A B �), since B  has no corresponding 
on-points in its prefix. It is because that sequence �A B � 
has no chance to grow to a frequent sequence. This 
strategy is called point-pruning strategy (line 2 and lines 9-16, 
algorithm 2) which can prune off non-qualified patterns before 
constructing projected database 

Second, when we construct a projected database, some 
usage-points in postfix sequences need not be considered. With 
respect to a prefix sequence ���, an off-point in a projected 
postfix sequence is insignificant, if it has no corresponding on- 
points in ���. Hence, when collecting postfix sequences to 
construct DB|��� , we can eliminate all insignificant off-points 
since they can be ignored in the discovery of correlation 
patterns. This pruning method is called postfix-pruning 
strategy which can shrink the length of postfix sequence and 
further reduce the size of projected database effectively (line 7 
and lines 17-22, algorithm 2). 

IV. EXPERIMENTAL RESULT 
To best of our knowledge, CPMS is the first method 

discussing the usage pattern implying the correlation among 
appliances. For performance discussion, we compare the 
mining algorithm of CPMS (i.e., CoPMiner) with three 
interval-pattern mining algorithms, CTMiner [4], IEMiner 
[20] and TPrefixSpan [25]. All algorithms were 
implemented in Java language and tested on a workstation 
with Intel i7-3370 3.4 GHz with 8 GB main memory. The 
performance study has been conducted on both synthetic 
and real world datasets. First, we compare the execution 
time using synthetic datasets at different minimum support. 
Second, we conduct an experiment to observe the memory 
usage and the scalability on execution time of CoPMiner. 
Finally, CoPMiner is applied in real-world dataset to show 
the performance and the practicability of mining correlation 
patterns. 

The synthetic datasets in the experiments are generated 
using   synthetic   generation   program   modified  from  
[21]. Since the original data generation program was 
designed to generate time point-based data, the generator for 
correlation pattern mining algorithm requires modifications 
on interval events accordingly. The parameter setting of 
usage data generator is shown in Fig. 5. 

 

 
Fig. 5: Parameters of synthetic data generator 
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We create a set of potentially frequent sequences used in 
the generation of event sequences. The number of potentially 
frequent sequences is NS. A potentially frequent sequence is 
generated by first picking the size of sequence from a 
Poisson distribution with mean equal to | S |. Then, the event 
intervals in potentially frequent sequence are chosen from N 
event symbols randomly. All the duration times of event 
intervals are classified into three categories: long, medium 
and short, which are normally distributed with an average 
length of 12, 8 and 4, respectively. 

For each event interval, we first randomly decide its 
category and then determine its length by drawing a value. 
The temporal relations between consecutive intervals are 
selected randomly to form a potentially frequent sequence. 
Since we adopt normalized temporal patterns [19], the 
temporal relationships can be chosen from the set {before, 
meets, overlaps, is-finished-by, contains, starts, equal}. After 
all potentially frequent sequences are determined, we 
generate | D | event sequences. Each event sequence is 
generated by first deciding the size of sequence, which was 
picked from a Poisson distribution with mean equal to | C |. 
Then, each event sequence is generated by assigning a series 
of potentially frequent sequences. Finally, we assign the on-
time of each usage-interval with discrete uniform distribution 
on {1, 2, …, 100}. The off-time is the on-time plus the 
interval length. The location information attached to each 
appliance is uniformly chosen on {1, …, 10}�{1, …, 10}�{1, 
2, 3}.  

4.1 Performance and Scalibility on Synthetic Datasets 
In all the following experiments, two parameters are 

fixed, i.e., | S | = 4 and NS = 5,000. The other parameters are 
configured for comparison. Fig. 6 shows the running time of 
the four algorithms with minimum supports varied from 1% 
to 5% on the dataset D10k–C20–N1k.  Obviously, when the 
minimum support value decreases, the processing time 
required for all algorithms increases. We can see that when   
we continue to lower the threshold, the runtime for IEMiner 
and TPrefixSpan increase drastically compared to CTMiner 
and CoPMiner. This is partly because these two algorithms 
still process interval-based data with complex relationship. 
The complex relationship may lead to generate more number 
of intermediate candidate sequences. 

 

 
Fig. 6: Runtime performance testing on D10k–C20–N1k dataset 

Fig. 7 shows the execution time of the four algorithms 
with minimum supports varied from 1% to 5% on the dataset 
D100k–C20–N10k, which is much larger since it contains 
100,000 event sequences and 10,000 event intervals. From 
the figure, we can observe that CoPMiner has the best 
runtime performance. Note that, although CTMiner also 
simplify the complex relation among intervals, the 
segmentation strategy of representation consumes more 
processing time. On the contrary, the proposed usage 
presentation only requires capturing two endpoints of an 
interval. Furthermore, three pruning strategies also play an 
important role for the efficiency of CoPMiner. We will 
discuss these in details later. 
 

 
Fig. 7: Runtime performance testing on D100k–C20–N10k dataset 

Then, we study the scalability of CoPMiner. Here, we 
use the data set C = 20, N = 10k with varying different 
database size. Fig. 8 shows the results of scalability tests of 
four algorithms with the database size growing from 100K to 
500K sequences. We fix the min_sup as 1%. Fig. 9 depicts 
the results of scalability tests of CoPMiner under different 
database size growing with different minimum support 
threshold varying from 1% to 5%. As the size of database 
increases and minimum support decreases, the processing 
time of all algorithms increase, since the number of patterns 
also increases. As can be seen, CoPMiner is linearly scalable 
with different minimum support threshold. When the number 
of generated patterns is large, the runtime of CoPMiner still 
increases linearly with different database size. 

 

 
Fig. 8: Scalability testing of different algorithms on different database size 
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Fig. 9: Scalability testing of different min_sup on different database size 

In summary, performance study shows that CoPMiner 
has the best overall performance among the algorithms tested. 
The scalability study also depicts that CoPMiner scales well 
even with large databases and low thresholds.  

4.2 Influence of Proposed Pruning Strategies 
To reflect the speedup of proposed pruning methods, we 

measure CoPMiner with pruning strategies and without 
pruning strategy on time performance. We compare four 
algorithms, CoPMiner (includes all pruning strategies), 
CoP_Point (only point-pruning strategy), CoP_Postfix (only 
postfix-pruning strategy) and CoP_None (without any 
pruning strategy). The experiment is performed on the data 
set D100k–C20–N10k. Fig. 10 is the results of varying 
minimum support thresholds from 0.5% to 1%. As shown in 
figure, CoP_Point can improve 23.4% to 27.9% of the 
performance of CoP_None. That means point-pruning can 
improve about 25% performance of CoPMiner. Because of 
removing non-qualified usage-points before database 
projection, point-pruning can efficiently speedup the 
execution time. 

The impact of the postfix-pruning is also presented in Fig. 
10. As can be seen from the graph, postfix-pruning can 
improve about 11% performance of CoP_None. We can find 
that postfix-pruning can improve the performance of 
CoPMiner by effectively eliminating all useless usage-points 
for correlation pattern construction.  
 

 
Fig. 10: Influence testing of three pruning strategies on different min_sup 

 

In summary, the pruning strategies constantly improve 
32% runtime performance of CoPMiner. Consequently, the 
proposed pruning strategies not only effectively reduce the 
searching space but also efficiently improve the performance 
of CoPMiner.   

4.3 Real World Dataset Analysis 
In addition to using synthetic datasets, we also have 

performed an experiment on real-world dataset to indicate 
the applicability of correlation pattern mining. The dataset 
REDD [14] used in the experiment is the power reading of 
appliances collected from six different houses. Each house 
has about 15 appliances. We convert the raw data into the 
usage interval with turn-on time and turn-off time. Fig. 11 
lists the information of six different houses in REDD dataset 
after transformation. 
 

house number of 
appliances 

number of 
sequences 

number of  
intervals  

1 16 36 1107 
2 8 15 536 
3 19 26 1361 
4 17 31 1655 
5 19 10 179 
6 11 19 526 

Fig. 11: Information of six different houses in REDD dataset 

Fig. 12 shows the part of mining result with min_sup = 
0.3. Obviously, from the proposed CPMS system, residents 
can know the correlation among the appliances in their 
house easily.  This useful information can not only help 
users to better understand how they use the appliances at 
home but also detect abnormal usages of appliances. 
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Fig. 12: Part of discovered correlation patterns from REDD dataset 

V. CONCLUSION 
Recently, considerable concern has arisen over the 

electricity conservation due to the issue of greenhouse gas 
emissions. If representative behaviors of appliance usages 
are available, residents may adapt their usage patterns to 
conserve energy effectively. However, previous studies on 
usage pattern discovery are mainly focused on analyzing 
single appliance and ignore the usage correlation among 
appliances. In this paper, we introduce a new concept, 
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correlation pattern, to capture the representative usage 
behaviors implying correlations among appliances. An 
intelligent system, CPMS is developed to discover patterns 
based on proposed usage representation. We also introduce 
several pruning strategies to improve the performance of the 
mining algorithm. The experimental studies indicate that 
CPMS is efficient and scalable. Furthermore, CPMS is 
applied on a real-world dataset to show the practicability of 
correlation pattern mining. 
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