
A Novel System for Extracting Useful Correlation in Smart Home Environment

1Yi-Cheng Chen, 2Wen-Chih Peng and 3Wang-Chien Lee
1Department of Computer Science and Information Engineering, Tamkang University, New Taipei City, Taiwan

2Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
3Department of Computer Science and Engineering, The Pennsylvania State University, Pennsylvania, USA

E-mail: ycchen@mail.tku.edu.tw wcpeng@cs.nctu.edu.tw wlee@cse.psu.edu

Abstract—Owing to the great advent of sensor technology, the
usage data of appliances in a house can be logged and collected
easily today. However, it is a challenge for the residents to
visualize how these appliances are used. Thus, mining
algorithms are much needed to discover appliance usage
patterns. Most previous studies on usage pattern discovery are
mainly focused on analyzing the patterns of single appliance
rather than mining the usage correlation among appliances. In
this paper, a novel system, namely, Correlation Pattern Mining
System (CPMS), is developed to capture the usage patterns and
correlations among appliances. With several new optimization
techniques, CPMS can reduce the search space effectively and
efficiently. Furthermore, the proposed algorithm is applied on
a real-world dataset to show the practicability of correlation
pattern mining.

Keywords- correlation pattern; smart home; sequential
pattern; time interval-based data; usage representation

I. INTRODUCTION
Recently, many researchers focus on the reduction of

electricity usage in residence because it is a significant
contributor of greenhouse gas (GHG) emissions. However,
electricity conservation is an arduous task for the residential
users due to the lack of detailed electricity usage. Due to the
advance of sensor technology, the electricity usage data of
in-house appliances can be collected easily. In particular, an
increasing number of smart power meters, which facilitates
data collection of appliance usage, have been deployed. With
the usage data, one could supposedly visualize how the
appliances are used.

With an anticipated huge amount of appliance usage data,
subtle information may exist but hidden. Therefore it is
necessary to devise data mining algorithms to discover
appliance usage patterns in order to make representative
usage behavior of appliances explicit. Appliance usage
patterns can not only help users to better understand how
they use the appliances at home but also detect abnormal
usages of appliances. Moreover, it facilitates appliance
manufacturers to design intelligent control of smart
appliances.

Many prior studies discuss how to extract useful
knowledge regarding usage patents of a single appliance via
energy disaggregation [3, 6, 7, 13, 16, 24] or appliance
recognition [2, 5, 8, 12, 18, 22, 24]. Farinaccio et al. [6] use
some patterns, such as number of ON-OFF switches, to
disaggregate the whole-house electricity consumption into a
number of major end-uses. Suzuki et al. [24] use a new

NIALM technique based on integer programming to
disaggregate residential power use. Lin et al. [16] use a
dynamic Bayesian network and filter to disaggregate the data
online. Kim et al. [13] investigate the effectiveness of several
unsupervised disaggregation methods on low frequency
power measurements collected in real homes. They also
propose a usage pattern which consists of on-duration
distribution of all appliances. Goncalves et al. [7] explore an
unsupervised approach to determine the number of
appliances in the household, including their power
consumption and state, at any given moment. Chen et al. [3]
disaggregate utility consumption from smart meters into
specific usage associated with certain human activities. They
propose a novel statistical framework for disaggregation on
coarse granular smart meter readings by modeling fixture
characteristic, household behavior, and activity correlations.

Prudenzi [22] utilize an artificial neural network based
procedure for identifying the electrical signatures of
residential appliances. Ito et al. [8] extract features from the
current (e.g., amplitude, form, timing) to develop appliance
signatures. For appliance recognition, Kato et al. [12] use
Principal Component Analysis to extract features from
electric signals and classify them using Support Vector
Machine. Aritoni et al. [2] develop a software prototype to
understand the behaviors of household appliances.
Matthews et al discuss some of these works and
characterize workable solutions [18]. Chen et al. [5]
introduce two types of usage patterns to describe users’
representative behaviors. Based on these two types of
patterns, an intelligent system, Jakkula et al. [9, 10, 11]
propose an Apriori-based algorithm for activity prediction
and anomaly detection from sensor data in a smart home.
HAUBA [5], is developed to analyze the usage status of all
appliances in a smart home environment.

All aforementioned studies focus on knowledge
extraction for a single appliance instead of the correlation
among appliances in a house. In our daily life, we usually
use different appliances simultaneously. For example, while
the night, air conditioner and television in the living room
may be turned on in the evening (as shown in Fig. 1). The
correlation among the usage of some appliances can provide
valuable information to assist residents better understand
how they use appliances.

Moreover, it is difficult to discover useful knowledge
from a huge set of generated patterns. Too many patterns
sometimes hinder users from understanding their actual

2013 IEEE 13th International Conference on Data Mining Workshops

978-0-7695-5109-8/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDMW.2013.15

357

2013 IEEE 13th International Conference on Data Mining Workshops

978-0-7695-5109-8/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDMW.2013.15

357

behaviors. Hence, we aim to derive compact and meaningful
patterns in this study.

Fig. 1: An example of daily usage sequence.

So far, little attention has been paid to the issue of mining
correlation among appliances, which undoubtedly is more
complex and arduous than mining the usage patterns of an
appliance alone, and thus requires new mining techniques. In
this paper, a new framework fundamentally different from
previous work is proposed to discover the usage correlation
patterns. The contributions of our work are as follows:

� We define the notion of correlation pattern based on
time interval-based sequence. Since the usage of a
device can be regarded as a usage interval (time
duration between turn-on and turn-off), interval-
based sequence can depict users’ daily behaviors
unambiguously.

� The relation between any two usage intervals is
intrinsically complex. This complex relation is really
crucial for designing a correlation pattern mining
algorithm with high efficiency and effectiveness,
since it may lead to more candidate sequences and
heavier workload for computing the support. We
propose a method, called usage representation, to
simplify the processing of complex relations among
intervals by considering the global information of
intervals in the sequence.

� We develop an intelligent system, called Correlation
Pattern Mining System (abbreviated as CPMS), to
capture the usage patterns implying the correlations
among appliances with several optimized techniques
to reduce the search space effectively.

� To demonstrate the practicability of correlation
pattern mining, we apply CPMS on a real dataset
and analyze the results to show the discovered
patterns are not just an anecdote.

The rest of the paper is organized as follows. Section 2
provides the preliminaries. Section 3 introduces the proposed
CPMS system. Section 4 reports the experimental results in a
performance study, and finally Section 5 concludes the paper.

II. PRELIMINARIES
Definition 1 (Usage-interval and usage-interval sequence)
Let A = {a1, a2,…, ak} be a set of k appliances. Let the triplet
(ai, oi, fi) � A � N � N denote a usage-interval of ai, where ai
� A, oi, fi � N and oi � fi. The two time points oi, fi denote the
using times, where oi and fi are the turn-on time and the turn-
off time of appliance ai, respectively. The set of all usage-
intervals over A is denoted by I. A usage-interval sequence is
a series of usage-intervals �(a1, o1, f1), (a2, o2, f2), …, (an, on,
fn)�, where oi � oi+1, and oi � fi.

Take Fig. 1 as an example. Suppose there are three
appliances, light, air conditioner (AC), television (TV). Each
appliance has its interior location in the house. (light, 18:00,
24:00) is a usage-interval and �(AC, 00:00, 06:00), (light,
05:00, 08:00), (light, 18:00, 24:00), (AC, 18:00, 24:00), (TV,
20:00, 22:00)� is a daily usage-interval sequence on Oct. 27,
2013.

Definition 2 (Usage-interval database) Considering a
database DB = {r1, r2, …, rm}, each record ri, where 1 � i � m,
consists of a date, a usage-interval (i.e. an appliance symbol,
a turn-on time, and a turn-off time, where turn-on time �
turn-off time). DB is called a usage-interval database. If all
records in DB with the same date are grouped together and
ordered by nondecreasing turn-on time, turn-off time and
appliance symbol, actually, DB can be transformed into a
collection of daily usage-interval sequences. Fig. 2 shows a
usage database which consists of 17 usage intervals and 4
daily usage-interval sequences.

Processing usage-interval sequence is a difficult task.
Since the relation among usage intervals is intrinsically
complex. Allen’s 13 temporal logics [1], in general, can be
adopted to describe the relations among intervals. However,
Allen’s logics are binary relation. When describing
relationships among more than three intervals, it may suffer
several problems. In this paper, we modify the coincidence
representation [4] and propose a new expression, called
usage representation, to address the ambiguous and scalable
problem of Allen’s temporal logics.

Given a usage-interval sequence Q = �(a1, o1, f1), (a2, o2,
f2), …, (an, on, fn)�, The set TSQ ={o1, f1, o2, f2, …, oi, fi,…, on,
fn} is a time set corresponding to Q, where 1 � i � n. If we
order all the elements of TSQ in nondecreasing order, we can
derive a sequence TQ = �t1, t2, …, t2n� where ti � TSQ , ti � ti+1.
TQ is called a time sequence corresponding to Q.

Definition 3 (Usage-point and usage sequence) Given a
usage-interval sequence Q = �(a1, o1, f1), (a2, o2, f2), …, (ai,
oi, fi), …, (an, on, fn)�, where (ai, oi, fi) � I and corresponding
TQ = �t1, t2, …, tj, …, t2n�, a function � that maps a usage
interval (ai, oi, fi) into two usage-points ai and ai is
defined as follows.

	

	
�
�

 �

�

iji

iji
j fta

ota
Qt

 if
 if

) ,�(, (1)

where ai and ai are called on-point and off-point of interval
(ai, oi, fi), respectively. The usage-points ak

*, …, a�
* (* can be

 or) are collected in brackets as a pointset if they occur at
the same time in TQ, denoted as (ak

*, …, a�
*). A usage

sequence SQ of Q is denoted by �s1, …, si,…, s2n� where si is
a usage-point.

For example, in Fig. 2, the database collects 4 daily
usage-interval sequences. The usage sequence of date 2 is �B

B D (E F)(E F)D �, and (E F) and (E F) are two
pointsets because they occur at the same time, respectively.

10/27, 2013: 00:00 24:0006:00 12:00 18:00

AC

TV

light

10/27, 2013: 00:00 24:0006:00 12:00 18:00

AC

TV

light

358358

date appliance
symbol

turn-on
time

turn-off
time pictorial example usage representation (usage sequence)

1 A 02:10 07:30
1 B 05:20 10:00
1 C 05:20 12:30
1 D 16:10 22:40
1 E 18:00 20:00

� A (B C) A B C D E E D �

2 B 00:40 05:30
2 D 08:00 14:00
2 E 10:20 13:10
2 F 10:20 13:10

� B B D (E F) (E F) D �

3 A 06:00 12:20
3 B 07:20 14:00
3 D 14:00 20:30
3 E 17:30 19:00

� A B A (B D) E E D �

4 B 08:30 10:00
4 A 13:20 16:00
4 D 20:00 23:30
4 E 21:30 22:40

� B B A A D E E D �

Fig. 2: An example of usage database.

Definition 4 (Usage representation) Given a usage-interval
sequence Q = �(a1, o1, f1), …, (an, on, fn)� and corresponding
time sequence TQ = �t1, …, ti, …,t2n�, by Definition 3, we can
derive a usage sequence SQ = �s1, …, si, …, s2n�. SQ is also
called the usage representation of Q.

By Definition 4, we can transfer a usage-interval
database into usage representation. Take the database in Fig.
2 as an example. The usage representation of DB is shown in
the last column in Fig. 2. For the rest of this paper, we
assume the usage database has already been transformed into
usage representation.

Let S1 = �x1, …, xi, …, xn� and S2 = �x1
’, …, xj

’, …, xm
’ � be

two usage sequences, where xi, xj
’ are pointsets and n � m. S1

is called a subsequence of S2, denoted as S1 S2, if there
exist integers 1 � k1 � k2 � …� kn � m such that x1 � xk1

’, x2 �
xk2

’, …, xn � xkn
’. Given a usage-interval database DB in

usage representation, the tuple (date, S)�DB is said to
contain a usage sequence S’ if S’ S. The support of a usage
sequence S’ in DB, denoted as support(S’), is the number of
tuples in the database containing S’. More formally,

support(S’) = |{ (date, S) �DB | S’ S }|. (2)
Obviously, the support count decides the significance of a
usage sequence. We use a support threshold, min_sup, to
filter out insignificant usage sequences. A usage sequence S
= �s1, …, sn� in DB is called a frequent sequence, if
support(S) � min_sup.

Definition 5 (Correlation pattern) Given a usage-interval
database DB in usage representation and a threshold,
min_sup, a usage sequence is called frequent if its support is
no less than minsup. A frequent usage sequence is called a
correlation pattern if all usage-points in the sequence appear
in pairs, i.e., every on(off)-point has a corresponding off(on)-
point.

Again, take the database in Fig. 2 as an example. Given
min_sup = 2, � A B A B � is a correlation pattern since its

support is 3 � 2 and all usage-points in sequence appear in
pairs. However, although �A B A � is a frequent usage
sequence, it is not a correlation pattern due to on-point B
having no corresponding off-point.

III. CPMS SYSTEM
We focus our study on correlation pattern mining in

smart home due to its wide applicability and the lack of
research on this topic. In this paper, we develop a new
system, called Correlation Pattern Mining System
(abbreviated as CPMS), to discover correlation patterns
effectively and efficiently. CPMS utilizes the arrangement of
endpoints to accomplish the mining of correlation among
appliances’ usage. We also propose two pruning strategies to
effectively reduce the search space and speedup the mining
process. In Section 3.1, we discuss several advantages of
usage representation. In Section 3.2, we detail the mining
system and proposed pruning mechanisms.

3.1 Advantages of usage representation
Extracting correlation patterns from data collected in

smart homes can provide resident useful information to
better understand the relation among usage of appliances.
Given a correlation pattern, as defined in Definition 5, a user
can know the relation between appliances.

Consider the correlation pattern �A B A B � in
aforementioned example. Suppose appliances A and B are
the light and the coffee machine, respectively. Given the
correlation of light and coffee machine, we can know the
relation between them. This information is very useful for
several applications, such as abnormal detection and activity
prediction. For example, a user forgets to turn off the coffee
machine when she goes to supermarket. The home
management system (HMS) detects that the coffee machine
is still turn-on at a time. Sine the pattern represents the
representative behavior (i.e., turning off coffee machine after
turning off light), the probability that coffee machine is still
on is very low. Thus, the HMS sends a message to the user’s
smart phone to notify this anomaly. Activity prediction also
can be realized by discovering correlation patterns. From the

B A D

E

E

A
B

D

B

E

F

D

A

B

C D

E

359359

example pattern, we can observe that the coffee machine is
usually turned on after the light is turned on. If we detect the
light is turned on at a given time, the HMS may
automatically turns on the coffee machine if probability of
the aforementioned correlation pattern is high.

A BA B

A
B

A
B

A
B
A
B

A
B

A
B

A
B

A
B

A BA B

A
B
A
B (A B) (A B)B equal AA equal B

A (A B)BB met-by AA meets B

A B (A B)B finishes AA finished-by B

(A B) B AB started-by AA starts B

A B B AB during AA contains B

A (A B) BB overlapped-by AA overlaps B

A A B BB after AA before B

usage
representation

pictorial
example

inversed
relation

temporal
relation

(A B) (A B)B equal AA equal B

A (A B)BB met-by AA meets B

A B (A B)B finishes AA finished-by B

(A B) B AB started-by AA starts B

A B B AB during AA contains B

A (A B) BB overlapped-by AA overlaps B

A A B BB after AA before B

usage
representation

pictorial
example

inversed
relation

temporal
relation

Fig. 3: The usage representation of Allen’s relations between two intervals.

Obviously, the correlation pattern mining is an arduous
task. Since the time period of the two usage-intervals may
overlap, the relation between them is intrinsically complex.
Allen’s 13 temporal logics [1], in general, can be adopted to
describe the relations among intervals, as shown in Fig. 3.
However, Allen’s logics are binary relations. When
describing relationships among more than three intervals,
Allen’s temporal logics may suffer several problems.

A suitable representation is very important for describing
a correlation pattern. In this paper, a new expression, called
usage representation, is proposed to effectively address the
ambiguous and scalable issue [25] for describing
relationships among intervals. Given two different usage-
intervals A and B, the usage representation of Allen’s 13
relations between A and B is categorized as in Fig. 3. Several
merits of usage representation are discussed as follows,

� Compactness: Since each usage-interval has two
usage-points, we only use 2k space for expressing a
k-interval sequence. The usage representation scales
well even with plenty of usage-intervals appearing in
a sequence.

� Nonambiguity: According to [25], we can find that
the usage representation has no ambiguous problem.
First, by Definition 3, we can transform every usage-
interval sequence to a unique usage sequence. In
other words, the temporal relations among intervals
can be mapped to a usage sequence. Second, in a
usage sequence, the order relation of the starting and
finishing endpoints of A and B can be categorized as
shown in Fig. 3. Hence, we can infer the original
temporal relationships between intervals A and B
nonambiguously.

� Simplicity: Obviously, the complex relations
between intervals are the major bottleneck of
correlation pattern mining. However, the relation

between two usage points is simple, just “before,”
“after” and “equal.” The simpler the relations, the
less number of intermediate candidate sequences are
generated and processed.

3.2 CPMS
Before introducing the proposed system, we modify the

idea in [21] and define the projected database first. Let � be
a usage sequence in a database DB with usage representation.
The � - projected database, denoted as DB|� , is the collection
of postfixes of sequences (including usage sequences and
corresponding time sequence) in DB with regards to prefix �.

Fig. 4 shows the system framework of CPMS. We first
collect the usage data of all appliances from the attached
smart meters and store them in cloud server (i.e., usage
database). Then we extract the usage patterns implying the
correlations among appliances from usage database.
Algorithm 1 illustrates the correlation pattern mining
algorithm, CoPMiner, of CPMS.

(2)�Pattern�Mining
Cloud
Database

Usage
Patterns

P2:
P3: …

P1:
P2:
P3: …

P1:

(1)�Sensor�data�log

(3)�Pattern�Visualization

Home

AlarmAlarmCPMS�APPAlarmAlarmCPMS�APP

on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light on������������off
ID 3

on������������off
ID 3

on������������off
ID 2

on������������off
ID 2

on������������off
ID 2

on������������off
ID4

D�Link� controler

Light

Usage�Patterns

Air�Conditioner

light

Usage�Patterns

Air�Conditioner

light

Fig. 4: The system framework of CPMS.

We first transform the usage database to usage
representation and calculates the count of each usage-point
concurrently (line 2, algorithm 1). CoPMiner removes
infrequent usage-points under given support threshold,
min_sup (line 3, algorithm 1). Then, for each frequent usage-
point, CoPMiner constructs the projected database and calls
UPrefixSpan recursively to obtain all correlation patterns
(lines 5-7, algorithm 1). Note that we only consider the on-
point here (line 4, algorithm 1). Finally, we output all
discovered correlation patterns.

Algorithm 1: CoPMiner (DB, min_sup, min_sim)
Input: a usage-interval database DB, the support threshold

min_sup, the similarity threshold min_sim
Output: all correlation patterns P

01: P � �;
02: transform DB into usage presentation by Definition 4;
03: find all frequent usage-points and remove infrequent

usage-points in DB;
04: FS � all frequent “on-points”;
05: for each s � FS do
06: construct DB|s;
07: UPrefixSpan(DB|s , s, min_sup, P);
08: output all correlation patterns P;

360360

By borrowing the idea of the PrefixSpan [21],
UPrefixSpan is developed with two search space pruning
methods. The pseudo code is shown in Algorithm 2. For a
prefix �, UPrefixSpan scans its projected database DB|� once
to discover all local frequent usage-points and remove
infrequent ones (line 1, algorithm 2). For frequent usage-
point s, we can append it to original prefix to generate a new
frequent sequence �’ with the length increased by 1. As such,
the prefixes are extended (lines 3-4, algorithm 2). If all
usage-points in a frequent sequence appear in pairs, i.e.,
every on(off)-point has corresponding off(on)-point, we can
output this frequent sequence as a correlation pattern (lines
5-6, algorithm 2). Finally, we can discover all correlation
patterns by constructing the projected database with the
frequently extended prefixes and recursively running until
the prefixes cannot be extended (lines 7-8, algorithm 2).

Algorithm 2: UPrefixSpan (DB|�, � , min_sup, P)
Input: a projected database DB|� , an usage sequence � , the support

threshold min_sup, and a set of correlation patterns P
Output: a set of correlation patterns P

01: scan DB|� once, remove infrequent usage-points and find every

frequent usage-point v such that:
(i) v can be assembled to the last pointset of � to form a frequent

sequence; or
(ii) �v� can be appended to � to form a frequent sequence;

01: FS � all frequent usage-points;
02: FS � point_pruning(FS, �); // point-pruning strategy
03: for each s � FS do
04: append s to � to form �’;
05: if �’ is a correlation pattern then
06: P � P �’ ;
07: DB|�’ � DB_construct(DB|�, �’); // prefix-pruning strategy
08: UPrefixSpan(DB|�’ , �’, min_sup, P);

Procedure point_pruning (FS, �)
09: temp_point � �;
10: for each s � FS do
11: if s is a “off-point” then // point-pruning strategy
12: if exist corresponding “on-point” in � then
13: temp_point � temp_point s;
14: if s is a “on-point” then
15: temp_point � temp_point s;
16: return temp_point;

Procedure DB_construct (DB|�, �’)
17: temp_seq � �;
18: find all postfix sequences of �’ in DB|� to form DB|�’ ;
19: for each postfix sequence q � DB|�’ do
20: eliminate the “off-points” in q which has no corresponding “on-

point” in �’ ; // prefix-pruning strategy
21: temp_seq � temp_seq q;
22: return temp_seq;

Taking into account the property of usage-point, we propose

two pruning strategies, point-pruning and postfix-pruning to
reduce the searching space efficiently and effectively. Firstly,
the on-points and the off-points definitely occur in pairs in a
usage sequence. We only require projecting the frequent on-
points or the frequent off-points which have the corresponding

on-points in their prefixes. For example, if we scan the
projected database DB|�A � with respective to prefix �A �
and find three frequent local usage-points, A , B and B .
We only require extending prefix �A � with A and B
(i.e., �A A � and �A B �), since B has no corresponding
on-points in its prefix. It is because that sequence �A B �
has no chance to grow to a frequent sequence. This
strategy is called point-pruning strategy (line 2 and lines 9-16,
algorithm 2) which can prune off non-qualified patterns before
constructing projected database

Second, when we construct a projected database, some
usage-points in postfix sequences need not be considered. With
respect to a prefix sequence ���, an off-point in a projected
postfix sequence is insignificant, if it has no corresponding on-
points in ���. Hence, when collecting postfix sequences to
construct DB|��� , we can eliminate all insignificant off-points
since they can be ignored in the discovery of correlation
patterns. This pruning method is called postfix-pruning
strategy which can shrink the length of postfix sequence and
further reduce the size of projected database effectively (line 7
and lines 17-22, algorithm 2).

IV. EXPERIMENTAL RESULT
To best of our knowledge, CPMS is the first method

discussing the usage pattern implying the correlation among
appliances. For performance discussion, we compare the
mining algorithm of CPMS (i.e., CoPMiner) with three
interval-pattern mining algorithms, CTMiner [4], IEMiner
[20] and TPrefixSpan [25]. All algorithms were
implemented in Java language and tested on a workstation
with Intel i7-3370 3.4 GHz with 8 GB main memory. The
performance study has been conducted on both synthetic
and real world datasets. First, we compare the execution
time using synthetic datasets at different minimum support.
Second, we conduct an experiment to observe the memory
usage and the scalability on execution time of CoPMiner.
Finally, CoPMiner is applied in real-world dataset to show
the performance and the practicability of mining correlation
patterns.

The synthetic datasets in the experiments are generated
using synthetic generation program modified from
[21]. Since the original data generation program was
designed to generate time point-based data, the generator for
correlation pattern mining algorithm requires modifications
on interval events accordingly. The parameter setting of
usage data generator is shown in Fig. 5.

Fig. 5: Parameters of synthetic data generator

361361

We create a set of potentially frequent sequences used in
the generation of event sequences. The number of potentially
frequent sequences is NS. A potentially frequent sequence is
generated by first picking the size of sequence from a
Poisson distribution with mean equal to | S |. Then, the event
intervals in potentially frequent sequence are chosen from N
event symbols randomly. All the duration times of event
intervals are classified into three categories: long, medium
and short, which are normally distributed with an average
length of 12, 8 and 4, respectively.

For each event interval, we first randomly decide its
category and then determine its length by drawing a value.
The temporal relations between consecutive intervals are
selected randomly to form a potentially frequent sequence.
Since we adopt normalized temporal patterns [19], the
temporal relationships can be chosen from the set {before,
meets, overlaps, is-finished-by, contains, starts, equal}. After
all potentially frequent sequences are determined, we
generate | D | event sequences. Each event sequence is
generated by first deciding the size of sequence, which was
picked from a Poisson distribution with mean equal to | C |.
Then, each event sequence is generated by assigning a series
of potentially frequent sequences. Finally, we assign the on-
time of each usage-interval with discrete uniform distribution
on {1, 2, …, 100}. The off-time is the on-time plus the
interval length. The location information attached to each
appliance is uniformly chosen on {1, …, 10}�{1, …, 10}�{1,
2, 3}.

4.1 Performance and Scalibility on Synthetic Datasets
In all the following experiments, two parameters are

fixed, i.e., | S | = 4 and NS = 5,000. The other parameters are
configured for comparison. Fig. 6 shows the running time of
the four algorithms with minimum supports varied from 1%
to 5% on the dataset D10k–C20–N1k. Obviously, when the
minimum support value decreases, the processing time
required for all algorithms increases. We can see that when
we continue to lower the threshold, the runtime for IEMiner
and TPrefixSpan increase drastically compared to CTMiner
and CoPMiner. This is partly because these two algorithms
still process interval-based data with complex relationship.
The complex relationship may lead to generate more number
of intermediate candidate sequences.

Fig. 6: Runtime performance testing on D10k–C20–N1k dataset

Fig. 7 shows the execution time of the four algorithms
with minimum supports varied from 1% to 5% on the dataset
D100k–C20–N10k, which is much larger since it contains
100,000 event sequences and 10,000 event intervals. From
the figure, we can observe that CoPMiner has the best
runtime performance. Note that, although CTMiner also
simplify the complex relation among intervals, the
segmentation strategy of representation consumes more
processing time. On the contrary, the proposed usage
presentation only requires capturing two endpoints of an
interval. Furthermore, three pruning strategies also play an
important role for the efficiency of CoPMiner. We will
discuss these in details later.

Fig. 7: Runtime performance testing on D100k–C20–N10k dataset

Then, we study the scalability of CoPMiner. Here, we
use the data set C = 20, N = 10k with varying different
database size. Fig. 8 shows the results of scalability tests of
four algorithms with the database size growing from 100K to
500K sequences. We fix the min_sup as 1%. Fig. 9 depicts
the results of scalability tests of CoPMiner under different
database size growing with different minimum support
threshold varying from 1% to 5%. As the size of database
increases and minimum support decreases, the processing
time of all algorithms increase, since the number of patterns
also increases. As can be seen, CoPMiner is linearly scalable
with different minimum support threshold. When the number
of generated patterns is large, the runtime of CoPMiner still
increases linearly with different database size.

Fig. 8: Scalability testing of different algorithms on different database size

5 4.5 4 3.5 3 2.5 2 1.5 1

ru
nn

in
g

tim
e

(s
ec

s)

D10k–C20–N1k

minimum support (%)

CoPMiner
CTMiner
TPrefixSpan
IEMiner

0

200

400

600

800

1000

1200

1400

5 4.5 4 3.5 3 2.5 2 1.5 1
minimum support (%)

ru
nn

in
g

tim
e

(s
ec

s)

CoPMiner

CTMiner

TPrefixSpan
IEMiner

D100k–C20–N10k

0

500

1000

1500

2000

2500

3000

100000 200000 300000 400000 500000

database size

ru
nn

in
g

tim
e

(s
ec

s)

CoPMiner
CTMiner

TPrefixSpan
IEMiner

362362

Fig. 9: Scalability testing of different min_sup on different database size

In summary, performance study shows that CoPMiner
has the best overall performance among the algorithms tested.
The scalability study also depicts that CoPMiner scales well
even with large databases and low thresholds.

4.2 Influence of Proposed Pruning Strategies
To reflect the speedup of proposed pruning methods, we

measure CoPMiner with pruning strategies and without
pruning strategy on time performance. We compare four
algorithms, CoPMiner (includes all pruning strategies),
CoP_Point (only point-pruning strategy), CoP_Postfix (only
postfix-pruning strategy) and CoP_None (without any
pruning strategy). The experiment is performed on the data
set D100k–C20–N10k. Fig. 10 is the results of varying
minimum support thresholds from 0.5% to 1%. As shown in
figure, CoP_Point can improve 23.4% to 27.9% of the
performance of CoP_None. That means point-pruning can
improve about 25% performance of CoPMiner. Because of
removing non-qualified usage-points before database
projection, point-pruning can efficiently speedup the
execution time.

The impact of the postfix-pruning is also presented in Fig.
10. As can be seen from the graph, postfix-pruning can
improve about 11% performance of CoP_None. We can find
that postfix-pruning can improve the performance of
CoPMiner by effectively eliminating all useless usage-points
for correlation pattern construction.

Fig. 10: Influence testing of three pruning strategies on different min_sup

In summary, the pruning strategies constantly improve
32% runtime performance of CoPMiner. Consequently, the
proposed pruning strategies not only effectively reduce the
searching space but also efficiently improve the performance
of CoPMiner.

4.3 Real World Dataset Analysis
In addition to using synthetic datasets, we also have

performed an experiment on real-world dataset to indicate
the applicability of correlation pattern mining. The dataset
REDD [14] used in the experiment is the power reading of
appliances collected from six different houses. Each house
has about 15 appliances. We convert the raw data into the
usage interval with turn-on time and turn-off time. Fig. 11
lists the information of six different houses in REDD dataset
after transformation.

house number of
appliances

number of
sequences

number of
intervals

1 16 36 1107
2 8 15 536
3 19 26 1361
4 17 31 1655
5 19 10 179
6 11 19 526

Fig. 11: Information of six different houses in REDD dataset

Fig. 12 shows the part of mining result with min_sup =
0.3. Obviously, from the proposed CPMS system, residents
can know the correlation among the appliances in their
house easily. This useful information can not only help
users to better understand how they use the appliances at
home but also detect abnormal usages of appliances.

2

3

1

Part of discovered correlation patternshouse

2

3

1

Part of discovered correlation patternshouse

outlet 1

furnace

heater

light 3light 1

light 2

light 3

light 2light 1

outlet 1

Fig. 12: Part of discovered correlation patterns from REDD dataset

V. CONCLUSION
Recently, considerable concern has arisen over the

electricity conservation due to the issue of greenhouse gas
emissions. If representative behaviors of appliance usages
are available, residents may adapt their usage patterns to
conserve energy effectively. However, previous studies on
usage pattern discovery are mainly focused on analyzing
single appliance and ignore the usage correlation among
appliances. In this paper, we introduce a new concept,

0

200

400

600

800

1000

1200

100000 200000 300000 400000 500000

database size

min_sup =1%
min_sup =2%

min_sup =5%

min_sup =3%
min_sup =4%

ru
nn

in
g

tim
e

(s
ec

s)

minimum support (%)

0

50

100

150

200

250

1 1.5 2 2.5 3 3.5 4 4.5 5

CoPMiner
CoP_Point
CoP_Postfix
CoP_None

ru
nn

in
g

tim
e

(s
ec

s)

363363

correlation pattern, to capture the representative usage
behaviors implying correlations among appliances. An
intelligent system, CPMS is developed to discover patterns
based on proposed usage representation. We also introduce
several pruning strategies to improve the performance of the
mining algorithm. The experimental studies indicate that
CPMS is efficient and scalable. Furthermore, CPMS is
applied on a real-world dataset to show the practicability of
correlation pattern mining.

ACKNOWLEDGE
Wen-Chih Peng was supported in part by the National
Science Council, Project No. 100-2218-E-009-016-MY3 and
100-2218-E-009-013-MY3.

REFERENCES
[1] J. Allen. Maintaining Knowledge about Temporal Intervals.

Communications of ACM, vol.26, issue 11, pp.832-843, 1983.
[2] O. Aritoni and V. Negru. A Methodology for Household

Appliances Behavior Recognition in AmI Systems Integration.
Proceedings of 7th International Conference on Automatic
and Autonomous Systems (ICAS'11), pp. 175-178, 2011.

[3] F. Chen, J. Dai, B. Wang, S. Sahu, M. Naphade and C. Lu.
Activity Analysis Based on Low Sample Rate Smart Meters.
Proceedings of 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD'11), pp.
240-248, 2011.

[4] Y. Chen, J. Jiang, W. Peng and S. Lee. An Efficient
Algorithm for Mining Time Interval-based Patterns in Large
Databases. Proceedings of 19th ACM International
Conference on Information and Knowledge Management
(CIKM'10), pp. 49-58, 2010.

[5] Y. Chen, Y. Ko, W. Peng and W. Lee. Mining Appliance
Usage Patterns in a Smart Home Environment. 17th Pacific-
Asia Conference in Knowledge Discovery and Data Mining,
Advances in Knowledge Discovery and Data Mining
(PAKDD’13), pp. 99-110, 2013.

[6] L. Farinaccio and R. Zmeureanu. Using a Pattern Recognition
Approach to Disaggregate the Total Electricity Consumption
in a House into the Major End-uses. Energy and Buildings,
vol. 30, no. 3, pp. 245-259, 1999.

[7] H. Goncalves, A. Ocneanu and M. Berges. Unsupervised
Disaggregation of Appliances using Aggregated Consumption
Data. KDD workshop on Data Mining Applications in
Sustainability (SustKDD'11), 2011.

[8] M. Ito, R. Uda, S. Ichimura, K. Tago, T. Hoshi and Y.
Matsushita. A Method of Appliance Detection Based on
Features of Power Waveform. Proceedings of 4th IEEE
Symposium on Applications and the Internet (SAINT'04), pp.
291-294, 2004.

[9] V. Jakkula and D. Cook. Learning Temporal Relations in
Smart Home Data. Proceedings of the Second International
Conference on Technology and Aging, 2007.

[10] V. Jakkula and D. Cook. Using Temporal Relations in Smart
Environment Data for Activity Prediction. Proceedings of the
24th International Conference on Machine Learning
(ICML'07), pp. 1-4, 2007.

[11] V. Jakkula, D. Cook and A. Crandall. Temporal pattern
discovery for anomaly detection in a smart home.

Proceedings of the 3rd IET Conference on Intelligent
Environments (IE’07), pp. 339-345, 2007.

[12] T. Kato, H. Cho, D. Lee, T. Toyomura and T. Yamazaki.
Appliance Recognition from Electric Current Signals for
Information-energy Integrated Network in Home
Environments. Ambient Assistive Health and Wellness
Management in the Heart of the City, vol. 5597, pp. 150-157,
2009.

[13] H. Kim, M. Marwah, M. Arlitt, G. Lyon and J. Han.
Unsupervised Disaggregation of Low Frequency Power
Measurements. Proceedings of 11th SIAM International
Conference on Data Mining (SDM'11), pp. 747-758, 2011.

[14] J. Kolter, M. Johnson. REDD: A Public Data Set for Energy
Disaggregation Research. KDD workshop on Data Mining
Applications in Sustainability (SustKDD'11), 2011.

[15] P. Liao, T. Chen and P. Chung. A Fast Algorithm for
Multilevel Thresholding. Journal of Information Science and
Engineering, Institute of Information Science, Academia
Sinica, 17, pp. 713-727, 2001.

[16] G. Lin, S. Lee, J. Hsu and W. Jih. Applying Power Meters for
Appliance Recognition on the Electric Panel. Proceedings of
5th IEEE Conference on Industrial Electronics and
Applications (ISIEA'10), pp. 2254-2259, 2010.

[17] B. Liu, Y. Yang, G. Webb and J. Boughton. A Comparative
Study of Bandwidth Choice in Kernel Density Estimation for
Naive Bayesian Classi�cation. 13th Pacific-Asia Conference
in Knowledge Discovery and Data Mining, Advances in
Knowledge Discovery and Data Mining, (PAKDD’09), pp.
302-313, 2009.

[18] H. Matthews, L. Soibelman, M. Berges and E. Goldman.
Automatically Disaggregating the Total Electrical Load in
Residential buildings: a profile of the required solution.
Intelligent Computing in Engineering, pp. 381-389, 2008.

[19] P. Papapetrou, G. Kollios, S. Sclaroff and D. Gunopulos.
Discovering Frequent Arrangements of Temporal Iintervals.
International Conference on Data Mining (ICDM’05), pp.
354-361, 2005.

[20] D. Patel, W. Hsu and M. Lee. Mining Relationships Among
Interval-based Events for Classification. Proceedings of the
2008 ACM SIGMOD International Conference on
Management of Data, pp. 393-404, 2008.

[21] J. Pei, J. Han, B. Mortazavi-Asl, H. Pito, Q. Chen, U. Dayal
and M. Hsu. PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern Growth. Proceedings
of 17th International Conference on Data Engineering
(ICDE’01), pp. 215-224, 2001.

[22] A. Prudenzi. A Neuron Nets Based Procedure for Identifying
Domestic Appliances Pattern-of-use from Energy Recordings
at Meter Panel. IEEE Power Engineering Society Winter
Meeting, vol. 2, pp.491-496, 2002.

[23] B. Silverman. Density Estimation for Statistics and Data
Analysis. CHAPMAN and HALL, 1986.

[24] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura and K. Ito.
Nonintrusive Appliance Load Monitoring Based on Integer
Programming. International Conference on Instrumentation,
Control and Information Technology (ICIT’08), pp. 2742-
2747, 2008.

[25] S. Wu and Y. Chen. Mining Nonambiguous Temporal
Patterns for Interval-Based Events. IEEE Transactions on
Knowledge and Data Engineering, vol.19, issue 6, pp. 742-
758, 2007.

364364

